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Evaporation of the benzene solution afforded 257 mg (72%) 
The identity was confirmed by 
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Because of its great importance in the theory of odd 
alternant radicals, the benzyl radical has been re- 
peatedly investigated both experimentally and theo- 
retically. 1-4 Heterocyclic analogs of benzylic and 
similar radical systems have been largely unstudied. 
One exception is Hudson'sb report of the esr spectra 
of both the 2-thenyl and 3-thenyl radicals generated 
in solution during the steady-state photolysis of di- 
tert-butyl peroxide in the presence of 2-methyl- and 
3-methylthiophene1 respectively. In  both the 2-thenyl 
and 3-thenyl radicals, the methylene protons were 
nonequivalent, but n-electron calculations of the nlc- 
Lachlan approximate SCF method did not provide any 
insight into this nonequivalence.b As long as the meth- 
ylene group's rotational barrier is large, one would ex- 
pect nonequivalence from a consideration of symmetry. 
Similar examples of magnetic inequivalence include 
the allyl6 and substituted allyl' radicals. In  these 
radicals more sophisticated, all-valence electron cal- 
culations, such as the IYDO technique, correctly pre- 
dict this inequivalence.8 

We now report the esr spectrum of the 2-furanyl- 
methyl radical, I, which was obtained during the steady- 
state photolysis of solutions of di-tert-butyl peroxide 
and 2-methylfuran at temperatures between - 30 and 
-80" in the esr cavityeg The spectrum exhibited 32 
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Figure 1,-Geometry of radical I used in INDO calculations. 

Figure 2.-Calculated r-bond orders 3f the 2-furanylmethyl 
radical. 

lines due to the inequivalence of the methylene protons 
and showed a signal to noise ratio a t  -80" similar to 
that observed6 for the 2-thenyl radical. The inequiva- 
lence persisted even a t  -30" and the only change in 
the spectrum observed on warming was a drastic de- 
crease in intensity. 
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I 

The experimental hyperfine splittings, as deter- 
mined by a computerized best fit to the experimental 
spectrum, are listed in Table I. Table I1 summarizes 
the g values determined for the benzyl, 2-theny1, and 
2-furanylmethyl radicals. lo The g-value variation 
is both a function of the size of the spin-orbit coupling 
for carbon, oxygen, and sulfur and the energy of the 
molecular orbital occupied by the odd electron." The 
0.0004-g value increase for the 2-thenyl over the 2- 
furanylmethyl radical is a measure of the increase in 
the size of the spin-orbit coupling constant for sulfur 
and the amount of sulfur d- and p-orbital contribution 
to the radical. However, the difficulty of measuring 
the radical's excitation energy and the number of its 
excited states contributing to the Ag shift prevents a 
determination of the sulfur d-orbital contribution. 
Nevertheless, the larger isotropic g value of 2.0061 ob- 
served for the thiophene-2-carboxylic acid radicall2 
suggests only a small sulfur d- and p-orbital contri- 
bution in the thenyl radical. 

A series of INDO*  calculation^^^ were performed on 
I using the bond angles and lengths for the furan por- 
tion obtained by BakI4 in his microwave study of furan. 
The methylene group was then attached and the param- 
eters used are summarized in Figure 1 . I b  The calcu- 
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TABLE I 
THEORETICAL AND EXPERIMENTAL HYPERFINE SPLITTING CONSTANTS (IN GAUSS), CALCULATED CHARUE DENSITIES, 

AND S-ORBITAL SPIN DENSITIES FOR 2-FURANYLMETHYL RADICAL ----------- Position of hydrogen--------- -7 

Experimental hfs 8.79 * 0.03 1.28 f 0.02 7.87 f 0.03 1 3 . 3 2 f 0 . 0 3  1 3 . 0 1 1  0.03 
Calculated (INDO) a 9.40 3.29 6.44 14.79 14.67 

b 8.23 2.93 5.59 16.59 16.49 

3 4 5 6 6 

------------- ---Atom----------y 
1 2 3 4 6 6 

s-Orbital spin density 0.0011 -0.0180 0.0217 - 0,0120 0.0153 0.0340 
Charge densityc -217.0 -I-217.9 -43.9 -29.4 4-164.9 -97.6 

Q Calculated using the 2-6 bond distance of 1.40 A; this was the minimum energy calculation. Calculated using the 2-6 bond 
distance of 1.46 A. Charge densities X lo3. 

TABLE I1 
THE VALUES FOR BENZYL, 2-THENYL, AND 

Average 
value of 0 ,  

Benzyl 2,00252 
2-Furanylmethyl 2.00269 
2-Thenyl 2.00312 

2-FURANYLMETHYL R.4DICALS I N  SOLUTION 

Radical Ga 

a These values are the average of six individual determinations, 
with an approximate error of =!=0.0001 G. 

lated values of the hyperfine splittings summarized in 
Table I compare very closely with the observed spec- 
trum and emphasize the inequivalence of the meth- 
ylene protons. Table I also lists the s-orbital spin 
densities and atomic charge densities in I. The charge 
densities illustrate oxygen's high electronegativity, 
and adjacent carbons, 2 and 5, bear significant positive 
charge. As predicted by valence-bond theory, the 
largest amount of spin density is concentrated on car- 
bons 6, 3, and 5. Thisjs in agreement with the short 
2-6 bond length of 1.40 A, which indicates the existence 
of significant 2-6 double bond character and suggests 
that a large rotational barrier should exist. The cal- 
culated a-bond orders (shown in Figure 2) further sub- 
stantiate this view. The 2-3 and 4-5 bonds have the 
highest r-bond order (see Ia),  but the large r-bond 
order of the 2-6 bond indicates that resonance hybrids 
Ib  and IC may be correctly invoked in portraying a 
valence bond structure. Furthermore, the moderately 
high r-bond order of the 3-4 bond supports the use 
of I C .  

The barrier to rotation about the 2-6 bond was cal- 
culated. The planar conformation was found to be 
25.16 kcal/mol more stable than the conformation in 
which the plane of the methylene group is perpendic- 
ular to the plane of the ring.16 This large rotational 
barrier explains the observed spectral inequivalence of 
the methylene protons at -30" and further demon- 
strates the strong electronic interaction of the meth- 
ylene group with the ring. 

In  conclusion, the inequivalence of the methylene 
protons in the 2-furanylmethyl radical has been ex- 
plained, and good agreement with the esr hyperfine 
splittings has been obtained using an INDO molecular 
orbital calculation based on the experimental micro- 
wave structural data of furan providing that the 2-6 
bond (methylene) distance has been optimized. 

(16) As expected, the methylene protons become equivalent in this per- 
pendicular conformation. 
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Recent spectroscopic investigations1 on the aggrega- 
tion of ionic l-phenylazo-2-naphthols in aqueous and 
methanolic solutions have shown the existence of 
monomer-dimer equilibria in the 10-6-10-4 M concen- 
tration range. The absorption spectra of the ionic 
hydroxy azo dyes with increasing dye concentration 
clearly indicate a decrease in the absorptive strength of 
the main absorption band accompanied by a hypso- 
chromic shift in the peak maxima. The dimer spectra 
for several ionic l-arylazo-2-naphthols show a strong H 
band on the high energy side of the monomer band and a 
weaker J band on the low energy side of the monomer 
transition. A study of the aggregation of this class of 
compounds is complicated by the fact that the mole- 
cules can exist in a quinone-hydrazone + azo-enol 
tautomeric equilibrium. 

I n  this note we report on the dimerization processes 
involving the tautomeric species involved in eq 1. The 
BR-2 compound is a common ionic arylazonaphthol 
compound known as Bonadur Red. It has recently 
been spectroscopically shown to exist as a quinone- 
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